New Spectre attack once again sends Intel and AMD scrambling for a fix


Rows of beautifully colored computer components.

Since 2018, an almost endless series of attacks broadly known as Spectre has kept Intel and AMD scrambling to develop defenses to mitigate vulnerabilities that allow malware to pluck passwords and other sensitive information directly out of silicon. Now, researchers say they’ve devised a new attack that breaks most—if not all—of those on-chip defenses.

Spectre got its name for its abuse of speculative execution, a feature in virtually all modern CPUs that predicts the future instructions the CPUs might receive and then follows a path that the instructions are likely to follow. By using code that forces a CPU to execute instructions along the wrong path, Spectre can extract confidential data that would have been accessed had the CPU continued down that wrong path. These exploits are known as transient executions.

“Dangerous implications”

Since Spectre was first described in 2018, new variants have surfaced almost every month. In many cases, the new variants have required chipmakers to develop new or augmented defenses to mitigate the attacks.

A key Intel protection known as LFENCE, for instance, stops more recent instructions from being dispatched to execution before earlier ones. Other hardware- and software-based solutions broadly known as “fencing” build digital fences around secret data to protect against transient execution attacks that would allow unauthorized access.

Researchers at the University of Virginia said last week that they found a new transient execution variant that breaks virtually all on-chip defenses that Intel and AMD have implemented to date. The new technique works by targeting an on-chip buffer that caches “micro-ops,” which are simplified commands that are derived from complex instructions. By allowing the CPU to fetch the commands quickly and early in the speculative execution process, micro-op caches improve processor speed.

The researchers are the first to exploit the micro-ops cache as a side channel, or as a medium for making observations about the confidential data stored inside a vulnerable computing system. By measuring the timing, power consumption, or other physical properties of a targeted system, an attacker can use a side channel to deduce data that otherwise would be off-limits.

“The micro-op cache as a side channel has several dangerous implications,” the researchers wrote in an academic paper. “First, it bypasses all techniques that mitigate caches as side channels. Second, these attacks are not detected by any existing attack or malware profile. Third, because the micro-op cache sits at the front of the pipeline, well before execution, certain defenses that mitigate Spectre and other transient execution attacks by restricting speculative cache updates still remain vulnerable to micro-op cache attacks.”

The paper continues:

Most existing invisible speculation and fencing-based solutions focus on hiding the unintended vulnerable side-effects of speculative execution that occur at the backend of the processor pipeline, rather than inhibiting the source of speculation at the front-end. That makes them vulnerable to the attack we describe, which discloses speculatively accessed secrets through a front-end side channel, before a transient instruction has the opportunity to get dispatched for execution. This eludes a whole suite of existing defenses. Furthermore, due to the relatively small size of the micro-op cache, our attack is significantly faster than existing Spectre variants that rely on priming and probing several cache sets to transmit secret information, and is considerably more stealthy, as it uses the micro-op cache as its sole disclosure primitive, introducing fewer data/instruction cache accesses, let alone misses.

Dissenting voices

There has been some pushback since the researchers published their paper. Intel disagreed that the new technique breaks defenses already put in place to protect against transient execution. In a statement, company officials wrote:

Intel reviewed the report and informed researchers that existing mitigations were not being bypassed and that this scenario is addressed in our secure coding guidance. Software following our guidance already have protections against incidental channels including the uop cache incidental channel. No new mitigations or guidance are needed.

Transient execution uses malicious code to exploit speculative execution. The exploits, in turn, bypass bounds checks, authorization checks, and other security measures built into applications. Software that follows Intel’s secure coding guidelines are resistant to such attacks, including the variant introduced last week.

Key to Intel’s guidance is the use of constant-time programming, an approach where code is written to be secret-independent. The…



Read More: New Spectre attack once again sends Intel and AMD scrambling for a fix

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

Get more stuff like this
in your inbox

Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

Thank you for subscribing.

Something went wrong.